ACEND

ACEND is an advanced formula with science-backed ingredients.

ACEND is EVIDENCE-BASED

Pharmacological evidence has revealed that flavonoids, phytochemicals considered essential for human health and viable cellular function, display a series of physiological and pharmacological benefits, not only on the cardiovascular and digestive system, but also support antioxidant, anti-inflammatory, anti-bacterial, anti-viral, anti-cancer, anti-tumor and hepatoprotective functions.i

INGREDIENTS

ACEND is EVIDENCE-BASED.

Each evidence-based ingredient in ACEND has been selected to provide the benefits associated with a rich supplementation of phytochemicals clinically identified to address chronic inflammation.

science-icon-1
Flavonoids & polyphenols
molecule
Bioactives, probiotics, prebiotics,
enzymes & amino acids
science-icon-3
Electrolytes, micro-nutrients
& minerals
science-icon-4
Vitamins

Disease Related Malnutrition (DRM), including deficiencies in polyphenols provokes a wide variety of diseases that dominate present-day morbidity and mortality worldwide.ii

ACEND Attributes

Nutrient deficiencies

Disease Related Malnutrition and deficiencies in phyto-compounds, minerals and vitamins contribute to illness, inhibit recouperation and can affect the metabolism of prescribed therapies.

 

ACEND is formulated to help manage DRM and for the dietary management to replace essential phyto-nutrients, vitamins and minerals in a formula that supports adherence and persistence.

 

One serving of ACEND has the phyto-compound equivalent of approximately 2-3 medium onions, 1 cup cooked fava beans, 2.5 medium sized carrots, 2.5 grams dried turmeric, 2/3 cups red grapes, 2-3 medium sized apples, ½ teaspoon black cumin seeds and 0.6 grams of algae (or 20 medium shrimp). This list does not consider ACEND’s vitamins, minerals, micro and macronutrients.  *Equivalents based on publicly available food databases.

Inflammatory response

Chronic inflammation contributes to heart disease, diabetes cancer and the complications of infectious diseases, the most significant causes of death in the world.iii ACEND is formulated to help manage proper inflammatory and cytokine response.

 

Supporting ingredients: betaine anhydrous, quercetin dihydrateiv, curcumin, epicatechinv, probiotics, astaxanthin, dihydroquercetin (taxifolin)vi, luteolinvii, dihydromyricetinviii, NACix, proanthocyanidinsx, vit D3xi, selenium.xii,xiii

Mitochondrial function

Mitochondria produce ATP, the essential energy for viable immune and metabolic function. The ingredients in ACEND are shown to increase ATP output.

 

Mitochondrial abnormalities can lead to cell and organ damage, and a growing number of diseases are associated with mitochondrial defects.xiv

 

Supporting ingredients: dihydroquercetin (taxifolin)xv, dihydromyricetinxvi, epicatechinxvii,xviii,xix, luteolinxx, quercetin dihydratexxi, proanthocyanidinsxxii,xxiii

Sirtuin activation and modulation

Sirtuins (SIRTs) are involved in many critical processes that take place within the cell.xxiv

 

They are indispensable for DNA repair, controlling inflammation and antioxidative defense.xxv

 

Supporting ingredients: astaxanthinxxvi, curcuminxxvii,xxviii,xxix, dihydromyricetinxxx, dihydroquercetinxxxi, epicatechinxxxii, luteolinxxxiii, thymoquinonexxxiv, quercetin dihydratexxxv.

Telomeres, Senolytics and cell senescence

Telomeres are a critical part in cellular replication and aging. As cells divide, Telomeres shorten, eventually resulting in cellular exhaustion and death.

 

This process can lead to age related diseases. Flavonoids have been shown to slow telomere attrition.xxxvi

 

Supporting ingredients: curcuminxxxvii, luteolinxxxviii, quercetin dihydrate.xxxix,xl,xli

 

Senescent cells accumulate in our tissues impairing their proper functioning and having a strong impact on surrounding cells. This can cause a low-grade inflammation and can induce senescence in neighboring cells.Removal of these senescent cells, or zombie cells, it critical for proper bodily function.xlii,xliii,xliv

 

Supporting ingredients: curcuminxlv, epicatechinxlvi. luteolinxlvii, quercetin dihydrate

Viral host restrictive factors

Flavonoids have been shown to exhibit qualities that influence the expression of various viral host restrictive factorsxlviii,xlix

 

Supporting ingredients: dihydromyricetinl, dihydroquercetin (taxifolin)li, luteolinlii, [vitamin B complex, D3, C seleniumliii], quercetin dihydrateliv, proanthocyanidins.lv,lvi

Gut ecology

Evidence has shown that impaired intestinal microbiota not only contributes to gut diseases but is inextricably linked to metabolic disorders.lvii

 

Prebiotics and probiotics are critical for maintaining a balanced gut ecology, which supports our overall health and immunological functions.

 

Flavonoids modulate a range of intestinal immune function, regulate gut microbiota and inhibit inflammation through direct and indirect mechanisms.lviii,lix

 

Flavonoids and flavonoid metabolites influence gut microbiota by supporting the colonization of healthy gut microbiota and increasing beneficial genera such as Bifidobacterium and Lactobacillus; these in turn could improve gut health by reducing the endotoxin production, maintaining gut immune homeostasis, and promoting nutrient absorption.lx

 

Supporting ingredients: prebiotic as acacia gum fiber, probiotic as bacillus coagulanslxi, epicatechinlxii, luteolinlxiii, dihydroquercetin (taxifolin)lxiv, dihydromyricetinlxv. quercetin dihydrate,lxvi[lxvii,lxviii,lxix,lxxi,lxxii]

Hydration

Peer reviewed literature has established that hydration is essential for nutrient absorption. ACEND contains essential electrolytes to aid in the absorption of ACEND’s other ingredients.

 

Supporting ingredients: potassium, calcium, magnesium, manganese.

DNA methylation

Betaine supports DNA methylation which is necessary for cellular health.

 

By enhancing and restoring hepatic methylation potentiation, DNA methylation regulates genes/proteins that prevent triglyceride accumulation in the liver.lxxiii

 

Betaine also has anti-inflammatory functions.

 

Supporting ingredients: betaine anhydrous.lxxiv, curcuminlxxv.

Immune modulation

Phytochemicals, prebiotics, probiotics, vitamins, and minerals impact our immune responses to pathogens and other antigens, regulate intestinal mucosal immune responses, support a healthy gut, and facilitates modulation of anti-tumor immunity. ACEND may therefore improve immune function.lxxvi,lxxvii,lxxviii

 

Supporting ingredients: ingredients in ACEND have been demonstrated in peer reviewed publications to demonstrate immune modulation.

Macrophage

Macrophages are a type of white blood cell of our innate immune system that attacks, engulfs, and digests pathogens, such as cancer cells, microbes, cellular debris, and foreign substances.

 

They play a key role in all stages of inflammation, mainly through the production of chemokines, cytokines, and growth factors.lxxix

 

Flavonoids can facilitate translation of macrophages from pro- to anti-inflammatory phenotypes, potentially contributing to the resolution of inflammatory processes.

 

Supporting ingredients: dihydromyricetinlxxx, dihydroquercetin (taxifolin)lxxxi, epicatechinlxxxii, luteolinlxxxiii. quercetin dihydratelxxxiv,lxxxv,lxxxvi.lxxxvii

Autophagy
Autophagy is the metabolism’s method of eliminating damaged cells, to regenerate newer, healthier cells. It is the process of self-digestion by a cell through the action of enzymes originating within the same cell. It is the process of recycling its own nutrients. This process happens when our body is stressed and goes into survival mode. This occurs when we are fasting. This process removes toxic proteins that are attributed to neurodegenerative diseases, it provides energy for cells that benefit from repair and prompts regeneration of healthy cells. Supporting ingredients: curcuminlxxxviii, dihydromyricetinlxxxix, dihydroquercetin (taxifolin)xc, epicatechin, luteolinxci. quercetin dihydratexcii,xciii,xciv,xcv
Neurocognitive function

An increasing body of evidence demonstrates the neuroprotective potential of flavonoids by preventing the onset and slowing the progression of age-related neurodegenerative diseases.

 

Taxifolin has been shown to support neurocognitive function in a multitude of ways. As a water soluble and small molecule, it can enter the central nervous system (CNS) and cross the blood brain barrier (BBB).

 

Epicatechin targets the brain-derived neurotrophic factor (BDNF) and its precursor proBDNF signaling pathways, normalizing both Tat-mediated increases in proapoptotic proBDNF and concomitant Tat-mediated decreases in the mature BDNF protein in hippocampal neurons. Due to its simpler structure and more efficient blood-brain barrier penetration properties, (-)-epicatechin might be the best therapeutic candidate for neurodegenerative diseases including HIV-associated neurocognitive disorders (HAND) where oxidative stress is an important pathophysiological mechanism.xcvi

 

Supporting ingredients: betaine anhydrousxcvii, curcuminxcviii, dihydromyricetinxcix,c, dihydroquercetin (taxifolin)ci, epicatechincii, luteolinciii, proanthocyanidinsciv, quercetin dihydratecv, thymoquinone.cvi,cvii,cviii,cix

Muscle atrophy

Muscle wasting can be a result of multiple factors, such as severe viral infection, medical induced procedures such as chemotherapy, muscle misuse, and aging.

 

Sarcopenia, cachexia, and disuse muscle atrophy are closely associated with inflammation. Proinflammatory cytokines present in the muscle trigger the signaling pathways related to muscle degradation through the NF-κB pathway.cx

 

Healthy mitochondria are vital for sustaining muscle function because the energy, in the form of ATP, is supplied to muscle fibers.

 

Supporting ingredients: curcumincxi, dihydromyricetincxii, epicatechincxiii, luteolincxiv, quercetin dihydratecxv, dihydroquercetin (taxifolin).cxvi

Insulin resistance, Diabetes mellitus

Current lifestyle has led to an enhanced prevalence of important metabolic diseases such as type 2 diabetes (T2D) and obesity. Both pathologies are considered the most common chronic diseases in nearly all countries and constitute an international health burden. According to the World Health Organization (WHO), the number of diabetic subjects has risen from 108 million in 1980 to 422 million in 2014, and the incidence of obesity has nearly tripled since 1975. (data published 04/2023)cxvii

 

According to the World Health Organization, eating a healthy diet, avoidance of sugar and saturated fat are leading ways to prevent or delay the onset of T2D.cxviii

 

It is important to note that current drugs are not satisfactorily effective in maintaining a long-term glycemia control in most patients. Thus, at present, it is considered that the most efficient approach to prevent or delay T2D and obesity is the reduction of sedentarism and changes in dietary habits.cxix

 

Numerous scientific evidence have revealed that flavonoids may contribute to prevent or ameliorate the insulin resistance in diabetes by their ability to modulate the insulin signaling pathway in classical target tissues such as liver, muscle, and adipose tissue.cxx,cxxi,cxxii

 

Supporting ingredients: dihydromyricetincxxiii, dihydroquercetin (taxifolin)cxxiv, epicatechin cxxv,cxxvi, luteolincxxvii, thymoquinonecxxviii, proanthocyanidinscxxix. quercetin dihydratecxxx,cxxxi

Evidence in multiple contemporary peer reviewed studies suggesting the development of chronic inflammation can be traced back to early development, and its effects persist to affect adulthood health and risk of mortality.

Disease related malnutrition contributes to systemic chronic inflammation (SCI)cxxxiiiand associated conditions including heart disease, stroke, cancer, diabetes mellitus, chronic kidney disease, dementia, non-alcoholic fatty liver disease (NAFLD), autoimmune and neurodegenerative conditions.cxxxiv

Several other nutritional factors can also promote inflammation and potentially contribute to the development of SCI, such as deficiencies in micronutrients, including zinccxxxv and magnesium.cxxxvi

ACEND contains polyphenols and micronutrients that have been shown to manage chronic inflammation.

NF-κB regulates the expression of inflammatory enzymes, a leading transcription factor during the inflammatory process and pain.cxxxvii

Inflammatory pathways

Flavonoids, some of the key ingredients in ACEND, can inhibit regulatory enzymes or transcription factors which are important for controlling mediators involved in our body’s inflammation. Flavonoids target various pathways in our body once they are ingested, broken down and absorbed.

ACE2 & Mpro
AMPK
ApoB & ApoE
IL-1β
IL-6
IL-8
IL-10
IL-18
CD38
COX-2
FOXO1
FOXO3
IGF-1
IKKβ
iNOS
JNK
MAPK
MAO
mTOR
NFkB
NLRP3
Nrf2
P13K/AkT
P38
P65
PCSK9
PPARy
ROS
SIRT1
SIRT3
SIRT6
STAT1
STAT3
STAT5
TLR4
TNFa
VEGF

More than 50% deaths are attributable to inflammation related diseases such as heart disease, stroke, cancer, diabetes mellitus, chronic kidney disease, thyroid disease, depression, dementia, non-alcoholic fatty liver disease (NAFLD), autoimmune and neurodegenerative conditions.cdxi

Inflammation explained

Inflammation is a natural process of the activation of immune and non-immune cells that protect the us from bacteria, viruses, toxins and infections (threats) by eliminating pathogens and promoting tissue repair and recovery.cdxii

There are two types of inflammation:

    • Acute inflammation: The response to sudden body damage, such as cutting your finger. To heal the cut, your body sends inflammatory cells to the injury. These cells start the healing process.
    • Chronic inflammation: Your body continues sending inflammatory cells even when there is no outside danger. For example, in rheumatoid arthritis inflammatory cells and substances attack joint tissues leading to an inflammation that comes and goes and can cause severe damage to joints with pain and deformities.

However, the presence of certain social, psychological, environmental, and biological factors, has been linked to the promotion of a state of low-grade, non-infective systemic chronic inflammation (SCI).cdxiii

Dietary factors can alter the gut microbiota composition and function and are linked to increased intestinal permeability and changes in the immune system that ultimately cause low-grade endotoxemia (the presence of endotoxins in the bloodstream) and SCI.cdxiv,cdxv

These altered molecules increase with age, which activate inflammasomes, amplify the inflammatory responsecdxvi, and contribute to inflammation defined as the “the long-term result of the chronic physiological stimulation of the innate immune system” that occurs in later life.cdxvii

Diet and Inflammation

Diet has a significant impact on our levels of inflammation.  The typical diet that has become widely adopted over the past 40 years is relatively low in fruits, vegetables and other fiber and prebiotic rich foods and high in refined grains, alcohol, and ultra-processed foods.

 

These dietary factors can alter the gut microbiota composition and function and are linked to increased intestinal permeability  and changes in the immune system that ultimately cause low-grade endotoxemia (the presence of endotoxins in the bloodstream) and SCI.

 

High glycemic load foods, such as isolated sugars and refined grains, which are common ingredients in most ultra-processed foods, can cause increased oxidative stress that activates inflammatory genes.

 

Several other nutritional factors can also promote inflammation and potentially contribute to the development of SCI, such as deficiencies in micronutrients, including zinc and magnesium.

 

When combined with low physical activity, consuming processed foods can cause major changes in cell metabolism and lead to the increased production of dysfunctional organelles such as mitochondria, as well as to misplaced molecules.

 

These altered molecules increase with age, which activate inflammasomes, amplify the inflammatory response, and contribute to a biological state that has been called “inflammaging,” defined as the “the long-term result of the chronic physiological stimulation of the innate immune system” that occurs in later life.

 

Inflammaging involves changes in numerous organ systems, such as the brain, gut, liver, kidney, adipose tissue and muscle, and it is driven by a variety of molecular-age-related mechanisms that have been called the “Seven Pillars of Aging” — namely, adaptation to stress, epigenetics, inflammation, macromolecular damage, metabolism, proteostasis and stem cells and regeneration.

 

ACEND contains phyto and micronutrients that have been shown to support an inflammatory response which may reduce chronic inflammation.

Drug-Free

What do we mean by the term, “drug-free”?

References

References

[i] Xiong HH, Lin SY, Chen LL, Ouyang KH, Wang WJ. The Interaction between Flavonoids and Intestinal Microbes: A Review. Foods. 2023 Jan 9;12(2):320. doi: 10.3390/foods12020320. PMID: 36673411; PMCID: PMC9857828
[iii] https://www.ncbi.nlm.nih.gov/books/NBK493173/
[iv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037709/
[v] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037709/
[vi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037709/
[vii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949538/
[viii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804380/
[ix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724866/
[x] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429339/
[xi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142114/
[xii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222958/
[xiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037709/
[xiv] El-Hattab A.W., Zarante A.M., Almannai M., Scaglia F. Therapies for mitochondrial diseases and current clinical trials. Mol. Genet. Metab. 2017;122:1–9. doi: 10.1016/j.ymgme.2017.09.009.
[xv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[xvi] https://pubmed.ncbi.nlm.nih.gov/30443190/
[xvii] Kicinska A, Jarmuszkiewicz W. Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules. 2020 Jul 4;25(13):3060. doi: 10.3390/molecules25133060. PMID: 32635481; PMCID: PMC7412508 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412508/
[xviii] Frédéric N Daussin and others, Effects of (−)-epicatechin on mitochondria, Nutrition Reviews, Volume 79, Issue 1, January 2021, Pages 25–41, https://doi.org/10.1093/nutrit/nuaa094
[xix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301192/
[xx] Kicinska A, Jarmuszkiewicz W. Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules. 2020 Jul 4;25(13):3060. doi: 10.3390/molecules25133060. PMID: 32635481; PMCID: PMC7412508 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412508/
[xxi] Kicinska A, Jarmuszkiewicz W. Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules. 2020 Jul 4;25(13):3060. doi: 10.3390/molecules25133060. PMID: 32635481; PMCID: PMC7412508 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412508/
[xxii] Frédéric N Daussin and others, Effects of (−)-epicatechin on mitochondria, Nutrition Reviews, Volume 79, Issue 1, January 2021, Pages 25–41, https://doi.org/10.1093/nutrit/nuaa094
[xxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301192/
[xxiv] Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators. Int J Mol Sci. 2021 Jan 10;22(2):630. doi: 10.3390/ijms22020630. PMID: 33435263; PMCID: PMC7827102
[xxv] Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017 Aug;18(4):447-476. doi: 10.1007/s10522-017-9685-9. Epub 2017 Mar 3. PMID: 28258519; PMCID: PMC5514220.
[xxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861325/
[xxvii] https://pubmed.ncbi.nlm.nih.gov/30145851/
[xxviii] https://pubmed.ncbi.nlm.nih.gov/35466876/
[xxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073883/
[xxx] https://pubmed.ncbi.nlm.nih.gov/37234960/
[xxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5158044/
[xxxii] https://www.nature.com/articles/s41598-018-22388-5
[xxxiii] https://pubmed.ncbi.nlm.nih.gov/36321482/
[xxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[xxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664594/
[xxxvi] Jacczak B, Rubiś B, Totoo E. Potential of Naturally Derived Compounds in Telomerase and Telomere Modulation in Skin Senescence and Aging. Int J Mol Sci. 2021 Jun 15;22(12):6381. doi: 10.3390/ijms22126381. PMID: 34203694; PMCID: PMC8232155
[xxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398038/
[xxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667226/
[xxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667226/
[xl] https://academic.oup.com/biomedgerontology/article/73/1/39/3828300?login=false
[xli] https://pubmed.ncbi.nlm.nih.gov/31728493/
[xlii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355713/
[xliii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879655/
[xliv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470070/
[xlv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429134/
[xlvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6490961/
[xlvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876631/
[xlviii] https://onlinelibrary.wiley.com/doi/10.1002/jmv.1890150110
[xlix] Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M. Antiviral activities of flavonoids. Biomed Pharmacother. 2021 Aug;140:111596. doi: 10.1016/j.biopha.2021.111596. Epub 2021 Jun 11. PMID: 34126315; PMCID: PMC8192980
[l] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349562/
[lili] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[lii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777084/
[liii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228835/
[liv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662201/
[lv] https://onlinelibrary.wiley.com/doi/10.1002/jmv.1890150110
[lvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192980/
[lvii] Lin L., Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017;18:2. doi: 10.1186/s12865-016-0187-3.
[lviii] Ruisong Pei, Xiaocao Liu, Bradley Bolling, Flavonoids and gut health, Current Opinion in Biotechnology,Volume 61, 2020, Pages 153-159, ISSN 0958-1669, https://doi.org/10.1016/j.copbio.2019.12.018. (https://www.sciencedirect.com/science/article/pii/S0958166919301569)
[lix] P.I. Oteiza, C.G. Fraga, D.A. Mills, D.H. Taft, Flavonoids and the gastrointestinal tract: local and systemic effects
Mol Aspects Med, 61 (2018), pp. 41-49
[lx] P.I. Oteiza, C.G. Fraga, D.A. Mills, D.H. Taft, Flavonoids and the gastrointestinal tract: local and systemic effects
Mol Aspects Med, 61 (2018), pp. 41-49
[lxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892684/
[lxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624971/
[lxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949538/
[lxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921741/
[lxv] https://pubmed.ncbi.nlm.nih.gov/29660761/
[lxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249127/
[lxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737781/
[lxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007053/
[lxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737781/
[lxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828240/
[lxxi] https://www.sciencedirect.com/science/article/pii/S0958166919301569?via%3Dihub
[lxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857828/
[lxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921017/
[lxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5976740/
[lxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092901/
[lxxvi] Front. Immunol., 11 April 2022, Sec. Nutritional Immunology , Volume 13 – 2022, https://doi.org/10.3389/fimmu.2022.899577
[lxxvii] https://www.frontiersin.org/articles/10.3389/fimmu.2018.03160/full
[lxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667406/
[lxxix] Dunster, J. L. The macrophage and its role in inflammation and tissue repair: mathematical and systems biology approaches. Wiley Interdiscip. Rev. Syst. Biol. Med. 8, 87–99 (2016).
[lxxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979283/
[lxxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[lxxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477097/
[lxxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834791/
[lxxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746507/
[lxxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797761/#:~:text=Several%20studies%20have%20shown%20that,established
%20inflammatory%20processes10%2C11
[lxxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100260/
[lxxxvii] https://pubmed.ncbi.nlm.nih.gov/37234960/
[lxxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429134/
[lxxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312341/
[xc] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[xci] https://pubmed.ncbi.nlm.nih.gov/33355379/
[xcii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088950/
[xciii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331011/
[xciv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804380/
[xcv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911475/
[xcvi] Nath S, Bachani M, Harshavardhana D, Steiner JP. Catechins protect neurons against mitochondrial toxins and HIV proteins via activation of the BDNF pathway. J Neurovirol. 2012 Dec;18(6):445-55. doi: 10.1007/s13365-012-0122-1. Epub 2012 Aug 11. PMID: 22886603.
[xcvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359206/
[xcviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572027/
[xcix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477154/
[c] https://pubmed.ncbi.nlm.nih.gov/29058041/
[ci] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[cii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477097/
[ciii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819254/
[civ] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628984/
[cv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023116/
[cvi] https://pubmed.ncbi.nlm.nih.gov/22886603/
[cvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525485/
[cviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930994/
[cix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143946/
[cx] Kim, C., Hwang, JK. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci Biotechnol 29, 1619–1640 (2020). https://doi.org/10.1007/s10068-020-00816-5
[cxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745475/
[cxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708614/
[cxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745475/
[cxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708614/
[cxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708614/
[cxvi] Kim, C., Hwang, JK. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci Biotechnol 29, 1619–1640 (2020). https://doi.org/10.1007/s10068-020-00816-5
[cxvii] https://www.who.int/news-room/fact-sheets/detail/diabetes
[cxviii] https://www.who.int/news-room/fact-sheets/detail/diabetes
[cxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231211/
[cxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231211/
[cxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539502/
[cxxii] https://www.mdpi.com/2079-9721/5/3/19
[cxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510796/
[cxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[cxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077617/
[cxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654920/
[cxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231211/
[cxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602931/
[cxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231211/
[cxxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231211/
[cxxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769509/
[cxxxii] https://www.nature.com/articles/s41591-019-0675-0
[cxxxiii] Straub, R. H. The brain and immune system prompt energy shortage in chronic inflammation and ageing. Nat. Rev. Rheumatol. 13, 743–751 (2017).
[cxxxiv] https://www.nature.com/articles/s41591-019-0675-0
[cxxxv] Bonaventura, P., Benedetti, G., Albarède, F. & Miossec, P. Zinc and its role in immunity and inflammation. Autoimm. Rev. 14, 277–285 (2015).
[cxxxvi] Nielsen, F. H. Effects of magnesium depletion on inflammation in chronic disease. Curr. Opin. Clin. Nutr. Metab. Care 17, 525–530 (2014).
[cxxxvii] Ferraz CR, Carvalho TT, Manchope MF, Artero NA, Rasquel-Oliveira FS, Fattori V, Casagrande R, Verri WA Jr. Therapeutic Potential of Flavonoids in Pain and Inflammation: Mechanisms of Action, Pre-Clinical and Clinical Data, and Pharmaceutical Development. Molecules. 2020 Feb 10;25(3):762. doi: 10.3390/molecules25030762. PMID: 32050623; PMCID: PMC7037709
[cxxxviii] https://www.frontiersin.org/articles/10.3389/fphar.2021.629935/full
[cxxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002334/
[cxl] https://www.frontiersin.org/articles/10.3389/fphar.2021.629935/full
[cxli] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002334/
[cxlii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385538/
[cxliii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539743/
[cxliv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898033/
[cxlv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8679518/
[cxlvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898033/
[cxlvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808608/
[cxlviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156180/
[cxlix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343824/
[cl] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973318/
[cli] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460777/
[clii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213547/
[cliii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572760/
[cliv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[clv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9155907/
[clvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460777/
[clvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343824/
[clviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343824/
[clix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460777/
[clxclx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921017/
[clxi] https://pubmed.ncbi.nlm.nih.gov/31642874/
[clxii] https://pubmed.ncbi.nlm.nih.gov/25173806/
[clxiii] https://pubmed.ncbi.nlm.nih.gov/16227197/
[clxiv] https://pubmed.ncbi.nlm.nih.gov/11936850/
[clxv] https://pubmed.ncbi.nlm.nih.gov/32301289/
[clxvi] https://pubmed.ncbi.nlm.nih.gov/11936850/
[clxvii] https://pubmed.ncbi.nlm.nih.gov/33355379/
[clxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398426/
[clxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062953/
[clxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921017/
[clxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5825906/
[clxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540215/
[clxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082633/
[clxxiv] https://pubmed.ncbi.nlm.nih.gov/37234960/
[clxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686859/
[clxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628093/
[clxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921741/
[clxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181073/
[clxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601739/
[clxxx] https://pubmed.ncbi.nlm.nih.gov/31958792/
[clxxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328718/
[clxxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523388/
[clxxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372632/
[clxxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427355/
[clxxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349562/
[clxxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686859/

[clxxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396685/
[clxxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769872/
[clxxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921741/
[cxc] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[cxci] https://pubmed.ncbi.nlm.nih.gov/1639201/
[cxcii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657629/
[cxciii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979283/
[cxciv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cxcv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613866/
[cxcvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979283/
[cxcvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686859/
[cxcviii] https://pubmed.ncbi.nlm.nih.gov/24399465/
[cxcix] https://pubmed.ncbi.nlm.nih.gov/21166540/
[cc] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235365/
[cci] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523388/
[ccii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543010/
[cciii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349562/
[cciv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746507/
[ccv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921741/
[ccvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106451/
[ccvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540215/
[ccviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540215/
[ccix] https://pubmed.ncbi.nlm.nih.gov/19539560/
[ccx] https://applbiolchem.springeropen.com/articles/10.1186/s13765-023-00769-3
[ccxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859886/
[ccxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834791/
[ccxiii] https://pubmed.ncbi.nlm.nih.gov/30596535/
[ccxiv] https://pubmed.ncbi.nlm.nih.gov/30717382/
[ccxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979283/
[ccxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065689/
[ccxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023541/
[ccxviii] https://link.springer.com/article/10.1007/s13273-019-0043-7
[ccxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390035/
[ccxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308520/
[ccxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002320/
[ccxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746502/
[ccxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904717/
[ccxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861325/
[ccxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929692/
[ccxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819254/
[ccxxvii] https://www.sciencedirect.com/science/article/abs/pii/S0960894X11006512?via%3Dihub
[ccxxviii] https://www.ncbi.nlm.nih.gov/books/NBK547742/
[ccxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[ccxxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5976740/
[ccxxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950067/
[ccxxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979283/
[ccxxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155314/
[ccxxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482621/
[ccxxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002320/
[ccxxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067617/
[ccxxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138109/
[ccxxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921017/
[ccxxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138109/
[ccxl] https://pubmed.ncbi.nlm.nih.gov/25832544/
[ccxli] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950067/
[ccxlii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[ccxliii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816384/
[ccxliv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331011/
[ccxlv] https://www.sciencedirect.com/science/article/abs/pii/S0047637404002040?via%3Dihub
[ccxlvi] https://www.frontiersin.org/articles/10.3389/fendo.2021.745959/full
[ccxlvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934563/
[ccxlviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921741/
[ccxlix] https://pubmed.ncbi.nlm.nih.gov/34803913/
[ccl] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602609/
[ccli] https://pubmed.ncbi.nlm.nih.gov/27487564/
[cclii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077617/
[ccliii] https://pubmed.ncbi.nlm.nih.gov/35281079/
[ccliv] https://pubmed.ncbi.nlm.nih.gov/28651238/
[cclv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540215/
[cclvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210685/
[cclvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6282966/
[cclviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477097/
[cclix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[cclx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249127/
[cclxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525485/
[cclxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359206/
[cclxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874694/
[cclxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cclxv] https://pubmed.ncbi.nlm.nih.gov/30623450/
[cclxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602609/
[cclxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396685/
[cclxviii] https://pubmed.ncbi.nlm.nih.gov/29966985/
[cclxix] https://pubmed.ncbi.nlm.nih.gov/31212975/
[cclxx] https://pubmed.ncbi.nlm.nih.gov/23419114/
[cclxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385169/
[cclxxii] https://www.ncbi.nlm.nih.gov/books/NBK559078/
[cclxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385169/
[cclxxiv] https://pubmed.ncbi.nlm.nih.gov/24218136/
[cclxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385169/
[cclxxvi] https://pubmed.ncbi.nlm.nih.gov/21372320/
[cclxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cclxxviii] https://pubmed.ncbi.nlm.nih.gov/30410442/
[cclxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477097/
[cclxxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816384/
[cclxxxi] https://pubmed.ncbi.nlm.nih.gov/24894198/
[cclxxxii] https://pubmed.ncbi.nlm.nih.gov/31261749/
[cclxxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[cclxxxiv] https://pubmed.ncbi.nlm.nih.gov/31257485/
[cclxxxv] https://www.cancer.gov/research/progress/discovery/mtor-inhibitors
[cclxxxvi] https://www.cellsignal.com/pathways/mtor-signaling-pathway
[cclxxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477154/
[cclxxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950067/
[cclxxxix] https://pubmed.ncbi.nlm.nih.gov/34473289/
[ccxc] https://pubmed.ncbi.nlm.nih.gov/36118165/
[ccxci] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816384/
[ccxcii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769872/
[ccxciii] https://pubmed.ncbi.nlm.nih.gov/36145344/
[ccxciv] https://www.nature.com/articles/sigtrans201723
[ccxcv] https://www.nature.com/articles/nri.2017.142
[ccxcvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[ccxcvii] https://www.jbc.org/article/S0021-9258(18)87080-6/fulltext
[ccxcviii] https://pubmed.ncbi.nlm.nih.gov/37234960/
[ccxcix] https://pubmed.ncbi.nlm.nih.gov/34477517/
[ccc] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[ccci] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769872/
[cccii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[ccciii] https://pubmed.ncbi.nlm.nih.gov/18057706/
[ccciv] https://pubmed.ncbi.nlm.nih.gov/31284572/
[cccv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cccvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497115/
[cccvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6282966/
[cccviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[cccix] https://pubmed.ncbi.nlm.nih.gov/22426011/
[cccx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5976740/
[cccxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369905/
[cccxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700122/
[cccxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cccxiv] https://pubmed.ncbi.nlm.nih.gov/37111238/
[cccxv] https://pubmed.ncbi.nlm.nih.gov/34217685/
[cccxvi] https://pubmed.ncbi.nlm.nih.gov/35024180/
[cccxvii] https://pubmed.ncbi.nlm.nih.gov/34217685/
[cccxviii] https://pubmed.ncbi.nlm.nih.gov/33242601/
[cccxix] https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pi3k-akt-mtor-pathway
[cccxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cccxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950067/
[cccxxii] https://pubmed.ncbi.nlm.nih.gov/30410442/
[cccxxiii] https://pubmed.ncbi.nlm.nih.gov/35024180/
[cccxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948818/
[cccxxv] https://pubmed.ncbi.nlm.nih.gov/33242601/
[cccxxvi] https://www.nature.com/articles/7290257
[cccxxvii] https://pubmed.ncbi.nlm.nih.gov/35060846/
[cccxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cccxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602609/
[cccxxx] https://pubmed.ncbi.nlm.nih.gov/30453148/
[cccxxxi] https://pubmed.ncbi.nlm.nih.gov/29966985/
[cccxxxii] https://pubmed.ncbi.nlm.nih.gov/31212975/
[cccxxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359206/
[cccxxxiv] https://pubmed.ncbi.nlm.nih.gov/31590042/
[cccxxxv] https://pubmed.ncbi.nlm.nih.gov/33461143/
[cccxxxvi] https://pubmed.ncbi.nlm.nih.gov/22425757/
[cccxxxvii] https://pubmed.ncbi.nlm.nih.gov/34688696/
[cccxxxviii] https://pubmed.ncbi.nlm.nih.gov/34217685/
[cccxxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[cccxl] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547722/
[cccxli] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284437/
[cccxlii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589637/
[cccxliii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547722/
[cccxliv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059709/
[cccxlv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518529/
[cccxlvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521084/
[cccxlvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407644/
[cccxlviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698906/
[cccxlix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407644/
[cccl] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407644/
[cccli] https://www.nature.com/articles/s41580-022-00456-z
[ccclii] https://pubmed.ncbi.nlm.nih.gov/22903797/
[cccliii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540215/
[cccliv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950067/
[ccclv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602609/
[ccclvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477097/
[ccclvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[ccclviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769872/
[ccclix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921741/
[ccclx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073883/
[ccclxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861325/
[ccclxii] https://pubmed.ncbi.nlm.nih.gov/30145851/
[ccclxiii] https://pubmed.ncbi.nlm.nih.gov/37234960/
[ccclxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5158044/
[ccclxv] https://pubmed.ncbi.nlm.nih.gov/36321482/
[ccclxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[ccclxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664594/
[ccclxviii] https://pubmed.ncbi.nlm.nih.gov/32724473/
[ccclxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050939/
[ccclxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617206/
[ccclxxi] https://pubmed.ncbi.nlm.nih.gov/36125053/
[ccclxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301192/
[ccclxxiii] https://pubmed.ncbi.nlm.nih.gov/30443190/
[ccclxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073883/
[ccclxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073883/
[ccclxxvi] https://pubmed.ncbi.nlm.nih.gov/33952798/
[ccclxxvii] https://www.nature.com/articles/s41598-018-22388-5
[ccclxxviii] https://pubmed.ncbi.nlm.nih.gov/35747154/
[ccclxxix] https://pubmed.ncbi.nlm.nih.gov/35456913/
[ccclxxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100260/
[ccclxxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617206/
[ccclxxxii] https://pubmed.ncbi.nlm.nih.gov/33239033/
[ccclxxxiii] https://pubmed.ncbi.nlm.nih.gov/32218808/
[ccclxxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617206/
[ccclxxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950067/
[ccclxxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769872/
[ccclxxxvii] https://pubmed.ncbi.nlm.nih.gov/24269735/
[ccclxxxviii] https://pubmed.ncbi.nlm.nih.gov/26716518/
[ccclxxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270306/
[cccxc] https://www.pnas.org/doi/10.1073/pnas.2011667117
[cccxci] https://pubmed.ncbi.nlm.nih.gov/31590042/
[cccxcii] https://pubmed.ncbi.nlm.nih.gov/36182732/
[cccxciii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249127/
[cccxciv] https://pubmed.ncbi.nlm.nih.gov/30669620/
[cccxcv] https://pubmed.ncbi.nlm.nih.gov/33800290/
[cccxcvi] https://pubmed.ncbi.nlm.nih.gov/34204220/
[cccxcvii] https://www.jbc.org/article/S0021-9258(18)87080-6/fulltext
[cccxcviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349562/
[cccxcix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912346/
[cd] https://pubmed.ncbi.nlm.nih.gov/29423011/
[cdi] https://pubmed.ncbi.nlm.nih.gov/26134265/
[cdii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249127/
[cdiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523388/
[cdiv] https://www.ncbi.nlm.nih.gov/books/NBK6482/
[cdv] https://my.clevelandclinic.org/health/articles/24206-angiogenesis
[cdvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429134/
[cdvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602609/
[cdviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477097/
[cdix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525485/
[cdx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249127/
[cdxii] Netea, M. G. et al. A guiding map for inflammation. Nat. Immunol. 18, 826–831 (2017
[cdxiv] Richards, J. L., Yap, Y. A., McLeod, K. H., Mackay, C. R. & Mariño, E. Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin. Trans. Immunol. 5, e82 (2016)
[cdxv] Dickinson, S., Hancock, D. P., Petocz, P., Ceriello, A. & Brand-Miller, J. High-glycemic index carbohydrate increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am. J. Clin. Nutr. 87, 1188–1193 (2008)
[cdxvi] Franceschi, C., Garagnani, P., Vitale, G., Capri, M. & Salvioli, S. Inflammaging and ‘garb-aging’. Trends Endocrinol. Metab. 28, 199–212 (2017).
[cdxvii] Franceschi, C., Garagnani, P., Vitale, G., Capri, M. & Salvioli, S. Inflammaging and ‘garb-aging’. Trends Endocrinol. Metab. 28, 199–212 (2017).

[i] Xiong HH, Lin SY, Chen LL, Ouyang KH, Wang WJ. The Interaction between Flavonoids and Intestinal Microbes: A Review. Foods. 2023 Jan 9;12(2):320. doi: 10.3390/foods12020320. PMID: 36673411; PMCID: PMC9857828
[iii] https://www.ncbi.nlm.nih.gov/books/NBK493173/
[iv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037709/
[v] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037709/
[vi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037709/
[vii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949538/
[viii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804380/
[ix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724866/
[x] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429339/
[xi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142114/
[xii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222958/
[xiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037709/
[xiv] El-Hattab A.W., Zarante A.M., Almannai M., Scaglia F. Therapies for mitochondrial diseases and current clinical trials. Mol. Genet. Metab. 2017;122:1–9. doi: 10.1016/j.ymgme.2017.09.009.
[xv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[xvi] https://pubmed.ncbi.nlm.nih.gov/30443190/
[xvii] Kicinska A, Jarmuszkiewicz W. Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules. 2020 Jul 4;25(13):3060. doi: 10.3390/molecules25133060. PMID: 32635481; PMCID: PMC7412508 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412508/
[xviii] Frédéric N Daussin and others, Effects of (−)-epicatechin on mitochondria, Nutrition Reviews, Volume 79, Issue 1, January 2021, Pages 25–41, https://doi.org/10.1093/nutrit/nuaa094
[xix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301192/
[xx] Kicinska A, Jarmuszkiewicz W. Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules. 2020 Jul 4;25(13):3060. doi: 10.3390/molecules25133060. PMID: 32635481; PMCID: PMC7412508 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412508/
[xxi] Kicinska A, Jarmuszkiewicz W. Flavonoids and Mitochondria: Activation of Cytoprotective Pathways? Molecules. 2020 Jul 4;25(13):3060. doi: 10.3390/molecules25133060. PMID: 32635481; PMCID: PMC7412508 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412508/
[xxii] Frédéric N Daussin and others, Effects of (−)-epicatechin on mitochondria, Nutrition Reviews, Volume 79, Issue 1, January 2021, Pages 25–41, https://doi.org/10.1093/nutrit/nuaa094
[xxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301192/
[xxiv] Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators. Int J Mol Sci. 2021 Jan 10;22(2):630. doi: 10.3390/ijms22020630. PMID: 33435263; PMCID: PMC7827102
[xxv] Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology. 2017 Aug;18(4):447-476. doi: 10.1007/s10522-017-9685-9. Epub 2017 Mar 3. PMID: 28258519; PMCID: PMC5514220.
[xxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861325/
[xxvii] https://pubmed.ncbi.nlm.nih.gov/30145851/
[xxviii] https://pubmed.ncbi.nlm.nih.gov/35466876/
[xxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073883/
[xxx] https://pubmed.ncbi.nlm.nih.gov/37234960/
[xxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5158044/
[xxxii] https://www.nature.com/articles/s41598-018-22388-5
[xxxiii] https://pubmed.ncbi.nlm.nih.gov/36321482/
[xxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[xxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664594/
[xxxvi] Jacczak B, Rubiś B, Totoo E. Potential of Naturally Derived Compounds in Telomerase and Telomere Modulation in Skin Senescence and Aging. Int J Mol Sci. 2021 Jun 15;22(12):6381. doi: 10.3390/ijms22126381. PMID: 34203694; PMCID: PMC8232155
[xxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398038/
[xxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667226/
[xxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667226/
[xl] https://academic.oup.com/biomedgerontology/article/73/1/39/3828300?login=false
[xli] https://pubmed.ncbi.nlm.nih.gov/31728493/
[xlii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355713/
[xliii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879655/
[xliv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470070/
[xlv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429134/
[xlvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6490961/
[xlvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9876631/
[xlviii] https://onlinelibrary.wiley.com/doi/10.1002/jmv.1890150110
[xlix] Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M. Antiviral activities of flavonoids. Biomed Pharmacother. 2021 Aug;140:111596. doi: 10.1016/j.biopha.2021.111596. Epub 2021 Jun 11. PMID: 34126315; PMCID: PMC8192980
[l] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349562/
[lili] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[lii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777084/
[liii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8228835/
[liv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662201/
[lv] https://onlinelibrary.wiley.com/doi/10.1002/jmv.1890150110
[lvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192980/
[lvii] Lin L., Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 2017;18:2. doi: 10.1186/s12865-016-0187-3.
[lviii] Ruisong Pei, Xiaocao Liu, Bradley Bolling, Flavonoids and gut health, Current Opinion in Biotechnology,Volume 61, 2020, Pages 153-159, ISSN 0958-1669, https://doi.org/10.1016/j.copbio.2019.12.018. (https://www.sciencedirect.com/science/article/pii/S0958166919301569)
[lix] P.I. Oteiza, C.G. Fraga, D.A. Mills, D.H. Taft, Flavonoids and the gastrointestinal tract: local and systemic effects
Mol Aspects Med, 61 (2018), pp. 41-49
[lx] P.I. Oteiza, C.G. Fraga, D.A. Mills, D.H. Taft, Flavonoids and the gastrointestinal tract: local and systemic effects
Mol Aspects Med, 61 (2018), pp. 41-49
[lxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892684/
[lxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624971/
[lxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949538/
[lxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921741/
[lxv] https://pubmed.ncbi.nlm.nih.gov/29660761/
[lxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249127/
[lxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737781/
[lxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6007053/
[lxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9737781/
[lxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828240/
[lxxi] https://www.sciencedirect.com/science/article/pii/S0958166919301569?via%3Dihub
[lxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857828/
[lxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921017/
[lxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5976740/
[lxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3092901/
[lxxvi] Front. Immunol., 11 April 2022, Sec. Nutritional Immunology , Volume 13 – 2022, https://doi.org/10.3389/fimmu.2022.899577
[lxxvii] https://www.frontiersin.org/articles/10.3389/fimmu.2018.03160/full
[lxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667406/
[lxxix] Dunster, J. L. The macrophage and its role in inflammation and tissue repair: mathematical and systems biology approaches. Wiley Interdiscip. Rev. Syst. Biol. Med. 8, 87–99 (2016).
[lxxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979283/
[lxxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[lxxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477097/
[lxxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834791/
[lxxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746507/
[lxxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6797761/#:~:text=Several%20studies%20have%20shown%20that,established
%20inflammatory%20processes10%2C11
[lxxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100260/
[lxxxvii] https://pubmed.ncbi.nlm.nih.gov/37234960/
[lxxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429134/
[lxxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312341/
[xc] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[xci] https://pubmed.ncbi.nlm.nih.gov/33355379/
[xcii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088950/
[xciii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331011/
[xciv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804380/
[xcv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7911475/
[xcvi] Nath S, Bachani M, Harshavardhana D, Steiner JP. Catechins protect neurons against mitochondrial toxins and HIV proteins via activation of the BDNF pathway. J Neurovirol. 2012 Dec;18(6):445-55. doi: 10.1007/s13365-012-0122-1. Epub 2012 Aug 11. PMID: 22886603.
[xcvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359206/
[xcviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572027/
[xcix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477154/
[c] https://pubmed.ncbi.nlm.nih.gov/29058041/
[ci] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[cii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477097/
[ciii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819254/
[civ] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628984/
[cv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023116/
[cvi] https://pubmed.ncbi.nlm.nih.gov/22886603/
[cvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525485/
[cviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930994/
[cix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143946/
[cx] Kim, C., Hwang, JK. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci Biotechnol 29, 1619–1640 (2020). https://doi.org/10.1007/s10068-020-00816-5
[cxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745475/
[cxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708614/
[cxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9745475/
[cxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708614/
[cxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7708614/
[cxvi] Kim, C., Hwang, JK. Flavonoids: nutraceutical potential for counteracting muscle atrophy. Food Sci Biotechnol 29, 1619–1640 (2020). https://doi.org/10.1007/s10068-020-00816-5
[cxvii] https://www.who.int/news-room/fact-sheets/detail/diabetes
[cxviii] https://www.who.int/news-room/fact-sheets/detail/diabetes
[cxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231211/
[cxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231211/
[cxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6539502/
[cxxii] https://www.mdpi.com/2079-9721/5/3/19
[cxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510796/
[cxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[cxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077617/
[cxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9654920/
[cxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231211/
[cxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9602931/
[cxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231211/
[cxxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231211/
[cxxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769509/
[cxxxii] https://www.nature.com/articles/s41591-019-0675-0
[cxxxiii] Straub, R. H. The brain and immune system prompt energy shortage in chronic inflammation and ageing. Nat. Rev. Rheumatol. 13, 743–751 (2017).
[cxxxiv] https://www.nature.com/articles/s41591-019-0675-0
[cxxxv] Bonaventura, P., Benedetti, G., Albarède, F. & Miossec, P. Zinc and its role in immunity and inflammation. Autoimm. Rev. 14, 277–285 (2015).
[cxxxvi] Nielsen, F. H. Effects of magnesium depletion on inflammation in chronic disease. Curr. Opin. Clin. Nutr. Metab. Care 17, 525–530 (2014).
[cxxxvii] Ferraz CR, Carvalho TT, Manchope MF, Artero NA, Rasquel-Oliveira FS, Fattori V, Casagrande R, Verri WA Jr. Therapeutic Potential of Flavonoids in Pain and Inflammation: Mechanisms of Action, Pre-Clinical and Clinical Data, and Pharmaceutical Development. Molecules. 2020 Feb 10;25(3):762. doi: 10.3390/molecules25030762. PMID: 32050623; PMCID: PMC7037709
[cxxxviii] https://www.frontiersin.org/articles/10.3389/fphar.2021.629935/full
[cxxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002334/
[cxl] https://www.frontiersin.org/articles/10.3389/fphar.2021.629935/full
[cxli] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002334/
[cxlii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385538/
[cxliii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8539743/
[cxliv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898033/
[cxlv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8679518/
[cxlvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8898033/
[cxlvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808608/
[cxlviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156180/
[cxlix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343824/
[cl] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4973318/
[cli] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460777/
[clii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213547/
[cliii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572760/
[cliv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[clv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9155907/
[clvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460777/
[clvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343824/
[clviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343824/
[clix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460777/
[clxclx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921017/
[clxi] https://pubmed.ncbi.nlm.nih.gov/31642874/
[clxii] https://pubmed.ncbi.nlm.nih.gov/25173806/
[clxiii] https://pubmed.ncbi.nlm.nih.gov/16227197/
[clxiv] https://pubmed.ncbi.nlm.nih.gov/11936850/
[clxv] https://pubmed.ncbi.nlm.nih.gov/32301289/
[clxvi] https://pubmed.ncbi.nlm.nih.gov/11936850/
[clxvii] https://pubmed.ncbi.nlm.nih.gov/33355379/
[clxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4398426/
[clxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062953/
[clxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921017/
[clxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5825906/
[clxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540215/
[clxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082633/
[clxxiv] https://pubmed.ncbi.nlm.nih.gov/37234960/
[clxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686859/
[clxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6628093/
[clxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921741/
[clxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9181073/
[clxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9601739/
[clxxx] https://pubmed.ncbi.nlm.nih.gov/31958792/
[clxxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328718/
[clxxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523388/
[clxxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372632/
[clxxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427355/
[clxxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349562/
[clxxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686859/

[clxxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396685/
[clxxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769872/
[clxxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921741/
[cxc] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[cxci] https://pubmed.ncbi.nlm.nih.gov/1639201/
[cxcii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9657629/
[cxciii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979283/
[cxciv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cxcv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2613866/
[cxcvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979283/
[cxcvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686859/
[cxcviii] https://pubmed.ncbi.nlm.nih.gov/24399465/
[cxcix] https://pubmed.ncbi.nlm.nih.gov/21166540/
[cc] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8235365/
[cci] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523388/
[ccii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9543010/
[cciii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349562/
[cciv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746507/
[ccv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921741/
[ccvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106451/
[ccvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540215/
[ccviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540215/
[ccix] https://pubmed.ncbi.nlm.nih.gov/19539560/
[ccx] https://applbiolchem.springeropen.com/articles/10.1186/s13765-023-00769-3
[ccxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859886/
[ccxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7834791/
[ccxiii] https://pubmed.ncbi.nlm.nih.gov/30596535/
[ccxiv] https://pubmed.ncbi.nlm.nih.gov/30717382/
[ccxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979283/
[ccxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065689/
[ccxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8023541/
[ccxviii] https://link.springer.com/article/10.1007/s13273-019-0043-7
[ccxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6390035/
[ccxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308520/
[ccxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002320/
[ccxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746502/
[ccxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904717/
[ccxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861325/
[ccxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6929692/
[ccxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2819254/
[ccxxvii] https://www.sciencedirect.com/science/article/abs/pii/S0960894X11006512?via%3Dihub
[ccxxviii] https://www.ncbi.nlm.nih.gov/books/NBK547742/
[ccxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[ccxxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5976740/
[ccxxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950067/
[ccxxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979283/
[ccxxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155314/
[ccxxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482621/
[ccxxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002320/
[ccxxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067617/
[ccxxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138109/
[ccxxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8921017/
[ccxxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138109/
[ccxl] https://pubmed.ncbi.nlm.nih.gov/25832544/
[ccxli] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950067/
[ccxlii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[ccxliii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816384/
[ccxliv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8331011/
[ccxlv] https://www.sciencedirect.com/science/article/abs/pii/S0047637404002040?via%3Dihub
[ccxlvi] https://www.frontiersin.org/articles/10.3389/fendo.2021.745959/full
[ccxlvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934563/
[ccxlviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921741/
[ccxlix] https://pubmed.ncbi.nlm.nih.gov/34803913/
[ccl] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602609/
[ccli] https://pubmed.ncbi.nlm.nih.gov/27487564/
[cclii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077617/
[ccliii] https://pubmed.ncbi.nlm.nih.gov/35281079/
[ccliv] https://pubmed.ncbi.nlm.nih.gov/28651238/
[cclv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540215/
[cclvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210685/
[cclvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6282966/
[cclviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477097/
[cclix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[cclx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249127/
[cclxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525485/
[cclxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359206/
[cclxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874694/
[cclxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cclxv] https://pubmed.ncbi.nlm.nih.gov/30623450/
[cclxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602609/
[cclxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396685/
[cclxviii] https://pubmed.ncbi.nlm.nih.gov/29966985/
[cclxix] https://pubmed.ncbi.nlm.nih.gov/31212975/
[cclxx] https://pubmed.ncbi.nlm.nih.gov/23419114/
[cclxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385169/
[cclxxii] https://www.ncbi.nlm.nih.gov/books/NBK559078/
[cclxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385169/
[cclxxiv] https://pubmed.ncbi.nlm.nih.gov/24218136/
[cclxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6385169/
[cclxxvi] https://pubmed.ncbi.nlm.nih.gov/21372320/
[cclxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cclxxviii] https://pubmed.ncbi.nlm.nih.gov/30410442/
[cclxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477097/
[cclxxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816384/
[cclxxxi] https://pubmed.ncbi.nlm.nih.gov/24894198/
[cclxxxii] https://pubmed.ncbi.nlm.nih.gov/31261749/
[cclxxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[cclxxxiv] https://pubmed.ncbi.nlm.nih.gov/31257485/
[cclxxxv] https://www.cancer.gov/research/progress/discovery/mtor-inhibitors
[cclxxxvi] https://www.cellsignal.com/pathways/mtor-signaling-pathway
[cclxxxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477154/
[cclxxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950067/
[cclxxxix] https://pubmed.ncbi.nlm.nih.gov/34473289/
[ccxc] https://pubmed.ncbi.nlm.nih.gov/36118165/
[ccxci] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816384/
[ccxcii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769872/
[ccxciii] https://pubmed.ncbi.nlm.nih.gov/36145344/
[ccxciv] https://www.nature.com/articles/sigtrans201723
[ccxcv] https://www.nature.com/articles/nri.2017.142
[ccxcvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[ccxcvii] https://www.jbc.org/article/S0021-9258(18)87080-6/fulltext
[ccxcviii] https://pubmed.ncbi.nlm.nih.gov/37234960/
[ccxcix] https://pubmed.ncbi.nlm.nih.gov/34477517/
[ccc] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[ccci] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769872/
[cccii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227600/
[ccciii] https://pubmed.ncbi.nlm.nih.gov/18057706/
[ccciv] https://pubmed.ncbi.nlm.nih.gov/31284572/
[cccv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cccvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497115/
[cccvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6282966/
[cccviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[cccix] https://pubmed.ncbi.nlm.nih.gov/22426011/
[cccx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5976740/
[cccxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369905/
[cccxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7700122/
[cccxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cccxiv] https://pubmed.ncbi.nlm.nih.gov/37111238/
[cccxv] https://pubmed.ncbi.nlm.nih.gov/34217685/
[cccxvi] https://pubmed.ncbi.nlm.nih.gov/35024180/
[cccxvii] https://pubmed.ncbi.nlm.nih.gov/34217685/
[cccxviii] https://pubmed.ncbi.nlm.nih.gov/33242601/
[cccxix] https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/pi3k-akt-mtor-pathway
[cccxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cccxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950067/
[cccxxii] https://pubmed.ncbi.nlm.nih.gov/30410442/
[cccxxiii] https://pubmed.ncbi.nlm.nih.gov/35024180/
[cccxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948818/
[cccxxv] https://pubmed.ncbi.nlm.nih.gov/33242601/
[cccxxvi] https://www.nature.com/articles/7290257
[cccxxvii] https://pubmed.ncbi.nlm.nih.gov/35060846/
[cccxxviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696511/
[cccxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602609/
[cccxxx] https://pubmed.ncbi.nlm.nih.gov/30453148/
[cccxxxi] https://pubmed.ncbi.nlm.nih.gov/29966985/
[cccxxxii] https://pubmed.ncbi.nlm.nih.gov/31212975/
[cccxxxiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359206/
[cccxxxiv] https://pubmed.ncbi.nlm.nih.gov/31590042/
[cccxxxv] https://pubmed.ncbi.nlm.nih.gov/33461143/
[cccxxxvi] https://pubmed.ncbi.nlm.nih.gov/22425757/
[cccxxxvii] https://pubmed.ncbi.nlm.nih.gov/34688696/
[cccxxxviii] https://pubmed.ncbi.nlm.nih.gov/34217685/
[cccxxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[cccxl] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547722/
[cccxli] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284437/
[cccxlii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8589637/
[cccxliii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547722/
[cccxliv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059709/
[cccxlv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518529/
[cccxlvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6521084/
[cccxlvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407644/
[cccxlviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698906/
[cccxlix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407644/
[cccl] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407644/
[cccli] https://www.nature.com/articles/s41580-022-00456-z
[ccclii] https://pubmed.ncbi.nlm.nih.gov/22903797/
[cccliii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540215/
[cccliv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950067/
[ccclv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602609/
[ccclvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477097/
[ccclvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[ccclviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769872/
[ccclix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7921741/
[ccclx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073883/
[ccclxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861325/
[ccclxii] https://pubmed.ncbi.nlm.nih.gov/30145851/
[ccclxiii] https://pubmed.ncbi.nlm.nih.gov/37234960/
[ccclxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5158044/
[ccclxv] https://pubmed.ncbi.nlm.nih.gov/36321482/
[ccclxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5632349/
[ccclxvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664594/
[ccclxviii] https://pubmed.ncbi.nlm.nih.gov/32724473/
[ccclxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050939/
[ccclxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617206/
[ccclxxi] https://pubmed.ncbi.nlm.nih.gov/36125053/
[ccclxxii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7301192/
[ccclxxiii] https://pubmed.ncbi.nlm.nih.gov/30443190/
[ccclxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073883/
[ccclxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8073883/
[ccclxxvi] https://pubmed.ncbi.nlm.nih.gov/33952798/
[ccclxxvii] https://www.nature.com/articles/s41598-018-22388-5
[ccclxxviii] https://pubmed.ncbi.nlm.nih.gov/35747154/
[ccclxxix] https://pubmed.ncbi.nlm.nih.gov/35456913/
[ccclxxx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9100260/
[ccclxxxi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617206/
[ccclxxxii] https://pubmed.ncbi.nlm.nih.gov/33239033/
[ccclxxxiii] https://pubmed.ncbi.nlm.nih.gov/32218808/
[ccclxxxiv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8617206/
[ccclxxxv] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6950067/
[ccclxxxvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6769872/
[ccclxxxvii] https://pubmed.ncbi.nlm.nih.gov/24269735/
[ccclxxxviii] https://pubmed.ncbi.nlm.nih.gov/26716518/
[ccclxxxix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270306/
[cccxc] https://www.pnas.org/doi/10.1073/pnas.2011667117
[cccxci] https://pubmed.ncbi.nlm.nih.gov/31590042/
[cccxcii] https://pubmed.ncbi.nlm.nih.gov/36182732/
[cccxciii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249127/
[cccxciv] https://pubmed.ncbi.nlm.nih.gov/30669620/
[cccxcv] https://pubmed.ncbi.nlm.nih.gov/33800290/
[cccxcvi] https://pubmed.ncbi.nlm.nih.gov/34204220/
[cccxcvii] https://www.jbc.org/article/S0021-9258(18)87080-6/fulltext
[cccxcviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349562/
[cccxcix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8912346/
[cd] https://pubmed.ncbi.nlm.nih.gov/29423011/
[cdi] https://pubmed.ncbi.nlm.nih.gov/26134265/
[cdii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249127/
[cdiii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523388/
[cdiv] https://www.ncbi.nlm.nih.gov/books/NBK6482/
[cdv] https://my.clevelandclinic.org/health/articles/24206-angiogenesis
[cdvi] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429134/
[cdvii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602609/
[cdviii] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477097/
[cdix] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525485/
[cdx] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8249127/
[cdxii] Netea, M. G. et al. A guiding map for inflammation. Nat. Immunol. 18, 826–831 (2017
[cdxiv] Richards, J. L., Yap, Y. A., McLeod, K. H., Mackay, C. R. & Mariño, E. Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin. Trans. Immunol. 5, e82 (2016)
[cdxv] Dickinson, S., Hancock, D. P., Petocz, P., Ceriello, A. & Brand-Miller, J. High-glycemic index carbohydrate increases nuclear factor-kappaB activation in mononuclear cells of young, lean healthy subjects. Am. J. Clin. Nutr. 87, 1188–1193 (2008)
[cdxvi] Franceschi, C., Garagnani, P., Vitale, G., Capri, M. & Salvioli, S. Inflammaging and ‘garb-aging’. Trends Endocrinol. Metab. 28, 199–212 (2017).
[cdxvii] Franceschi, C., Garagnani, P., Vitale, G., Capri, M. & Salvioli, S. Inflammaging and ‘garb-aging’. Trends Endocrinol. Metab. 28, 199–212 (2017).